
H E A T  C O N D U C T I O N  I N  A S E R I E S  OF I N H O M O G E N E O U S  S L A B S  

O. V .  G o l u b e v a  a n d  S h .  V .  V e r d i k h a n o v  UDC 536.24.02 

A genera l  theory  is worked out for  boundary-va lue  p rob l ems  of s t eady- s t a t e ,  two-d imen-  
sional heat conduction in a s e r i e s  of inhomogeneous med ia .  Specific examples  a r e  d i s -  
cussed .  

The theory  of s t eady- s t a t e  heat  conduction is  of considerable  in te res t  because  o f i t s p r a c t i c a l  appl ica-  
t ions in s e v e r a l  si tuations in modern  technology.  A cha rac t e r i s t i c  f ea tu re  of heat-conduct ing media is their  
inhomogeneity;  because  of this complicat ion,  compara t ive ly  few pape r s  have appeared  on this subject  (note- 
worthy among these  pape r s  a r e  [1-4]). In the p resen t  paper  we continue this work .  

1. S teady-s ta te  heat  conduction in an i so t ropic  medium is descr ibed  by the Four ie r  law and the con-  
tinuity equation: 

j = - -  k v T ,  div j = O, 

where  k is the (general ly var iable)  heat-conduct ion coefficient,  a m e a s u r e  of the inhomogeneity of the 
med ium.  

Fo r  the case of two-dimens iona l  heat  conduction in s labs  with curv t l tnear  su r faces ,  these equations 
lead to [5] 

ix = k aT  k a ~  . j,~ k aT  k a~ (1.1) 
c ax cp ay c Oy cp ox 

where  x, y is the i so the rma l  coordinate  sys t em for  the sur face  [(is z =c2(dx ~ +dyZ)], h is the slab th ickness ,  
p =kh is the t he rma l  conductivity of the slab,  T is the t e m p e r a t u r e ,  and ~b is the hea t - f lux  function. 

F r o m  E q s .  (1.1) we find se l f -adjo in t  el l ipt ic  equations for T and ~b: 

0(0 ) 0(0 ) 
O x P -~z + -~y p = 0 ,  (1.2) 

5(' ~ ox ~ + p - o v  (1.3) 

We a s s u m e  that the hea t - f lux  region c~ contains no s ingular i t ies  of the  slab,  i .e . ,  that p(x, y) ~ 0, .% for  
(x, y)Ea; and we a s s u m e  that boundary conditions of the f i r s t  kind a re  specif ied at the boundary of the r e -  
gion. Then for  Eq~ (1.2) the condition 

T (x, y) [L = Tz  (1.4) 

co r r e sponds  to the specif icat ion of the t e m p e r a t u r e  prof i le  at  the boundary of the hea t - f lux  region,  and 
for  Eq.  (1.3) the condition 

, (x. v) tL = , L  (1 .5)  

co r r e sponds  to the specif icat ion of the heat  flux a c r o s s  this region [5]. 

2. These  boundary-va lue  p rob l ems  a r e  solved by means  of a G r e e n ' s  function. We consider  a c i r c l e  
L t of rad ius  e > 0 which l ies  en t i re ly  within r~gion a and is centered  a t  point x0, Y0. We use  the f i r s t  funda-  
menta l  solution Tlf of Eq.  (1.2) [6]: 
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12.1) 

where C is a constant and where fl, f2 are  functions which, along with their part ial  derivat ives,  a re  con- 
tinuous in the doubly connected region D, bounded by contours L and Ll, 

h (x, y ,  x o, Yo) = 1, r = V (x - Xo) ~ + (y - yo)2.  

We introduce the function T[f, which sat isf ies Eq.  (1.2) and which takes on the following value at boundary 

L: 

T; f !z. = T1f. 

Then the Green ' s  function of the boundary-value problem of the f i rs t  kind for Eq. (1.2) is 

1 
G =  C (T;f--T~f), (G]L=0). (2.2) 

Using the operator  A(p, T) [see (1.2)], we write the generalized Green ' s  function [5] 

5)" [TA(p, T,) --T,A(p, T)] dxdy= L p T On,Or' - -T ,  --~dS,on, ] '~' T On T, ds. (2.8) 

Assuming that T i =G, T sat isf ies Eq.  (1.2) and the boundary condition in (1.4), and also using the relat ions 

0 a 
. . . .  , r = e ,  dsl=ed% 

On~ Or 

on ci rc le  L I, we find the following f rom the general ized Green ' s  function: 
2~ 

Or O---r-- q = PL TL ~= OL On ]L 
0 

Then taking the limit e ~ 0, we find 

1 ~ PLTL ( OG ~ ds (2.4) 
T(xo, Oo) -- 2np(Xo ' Yo) d a  k-~n J:-- " 

Equation (2.4) thus can be used to determine the tempera ture  distribution within the region of variable 
thermal  conductivity on the basis  of the tempera ture  profile at the boundary, if we know Green ' s  function 
(2.2). 

Analogously, we can construct  the heat flux function ~ within the region on the basis  of its boundary 
values,  once we have the Green ' s  function corresponding to Eq.  (1.3). 

The Green ' s  function in (2.2), or the f i rs t  fundamental solution in (2.1), which is related to this 
Green ' s  function, is known for only a limited number of functions p(x, y), so that we should like to analyze 
the possibi l i ty of construct ing solutions for a set of s imilar  boundary-value problems for  var ious functions 
p on the basis  of the solution of one such problem.  Methods for construct ing such solutions are  called 
" t ransfer  methods" [5]. 

3. We assume that we have a solution for some boundary-value problem for T under boundary condi-  
tion (1.4) in a slab with thermal  conductivity p; then the function ~ =T is the solution of the boundary-value 
problem for r in a slab with thermal  conductivity 1/p under boundary condition (1.5). In the region ~, 
the s t reaml ines  in slab p are  rotated through an angle of ~/2 in s lab 1/p [5]. Slabs p and 1/p are  "adjoint 
s l abs , "  and their relat ionship can be written symbolical ly as 

1 
4. Equations (1.1) are  covariant  with respec t  to conformal mappings; in par t icular ,  the isothermal  

surface coordinates x, y can be thought of as the coordinates of a plane onto which the base of the slab is 
mapped [5]. 

I t  follows that the solution of this boundary-value problem for T (or ~) in slab p(x,y) corresponds  to 
an infinite set  of solutions of the boundary-value problems in the slabs p*(~, ~?), which are  the conformal 
mappings of the original slab. The var iables  ~, ~? define the plane or surface onto which plane z is con-  
formal ly  mapped.  
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By u s i n g  a conformal-mapping procedure  we can thus work from a single two-dimensional  boundary-  
value problem to find a se r i e s  of analogous problems in heat-conducting slabs which form a conformal 
family .  This family can be written symbolical ly as 

Tip(x ,  g)] = T[p(x(~, TI) , y(~, 11))], 0~ _ 0~ , 0~ &l (4.1i 
Ox Og Oy Ox 

5.  U s i n g  a t ransformat ion of the function T of the type [6] 

(I) 
T ~ - -  

V / '  
(5.1) 

we can write Eq.  (1.2) in the canonical form 

a v G  m = o. (5.:)  hoD+ 

With given P=Pl and, correspondingly,  known A~p-~pl/(-~-~ =K1, we can evidently examine the family of different 
slabs satisfying the equation [7] 

aV-~+ KIV-p = o: (5.3) 

in this entire family of slabs the tempera ture  distribution is governed by Eq.  (5.3). 

If T i and T a re  concrete  and a rb i t r a ry  solutions of Eq. (1.2) with P=Pa, then 

~D1 T [Pl] -- �9 Vx = V ~ '  V ~  " (5.4) 

Since ~ can be thought of as the law governing the behavior of the thermal  conductivity of the slab, we can 
write 

T [@~] = �9 �9 1 (5.5) 

From (5.1) and (5.4) we find 

T [T~p,] = T [Pl] , (5.6) 
T1 

where T 1 is some par t icular  solution of heat-conduction equation (1.2). 

Slabs whose thermal  conductivities satisfy Eq. (5.3) are  "slabs of the K 1 Ser ies . "  

To t rans form f rom the tempera ture  distribution in one slab of the ser ies  to another,  we use Eq. (5.6). 
I f  the boundary-value problem of the f i rs t  kind has been solved in slab Pl, then the analogous probIems in 
the slabs of the K 1 ser ies  are  governed by (5.6), with the following condition satisfied at boundary L: 

2 T [Plk 
T [Tlpi] It. ---- (5.7) 

TIL 

The s implest  ser ies  of slabs is K 1 =0, for which the laws governing the behavior of the thermal  conductivity 
a re  the squares  of the harmonic  functions u .  We call such a ser ies  a "harmonic  s e r i e s . "  Since it includes 
u i =1, we find, using (5.6), 

T [u ~1 = T [I_____]] 
u (5.8) 

The problem of heat propagation in a harmonic  se r i e s  of slabs thus reduces to that in a homogeneous 
slab (p = 1). 

A par t icu lar  proper ty  of the se r ies  u 2 is that it cor responds  to a conformal family .  Different boun- 
dary-value  problems can be solved, however,  by using (4.1) and (5.6). 

6. We consider  the tempera ture  distribution in a slab of a harmonic  ser ies  whose region U, which 
contains no singulari t ies  of the slab, is bounded by c i rc le  L in the case of a conformal mapping onto the 
x, y plane, 

We introduce the auxil iary polar coordinates p, q~- 
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x = x~ + p cos qc, y = Y~ -i- 9 sin % (6.1) 

w h e r e  x t, YI is  the c en t e r  of c i r c l e  L .  I f  R i s  the r a d i u s  of th is  c i r c l e ,  then the equat ion of c i r c l e  L is  

p = R. (6.2) 

The f i r s t  fundamen ta l  solut ion (2.1) fo r  a h o m o g e n e o u s  h e a t - c o n d u c t i n g  s lab ,  Tlf ,  i s  

I 
Tar [1] = C I n - -  , where r = ]79~ _+_ 98 - -  29oPC~ - -  r - (6.3) 

t" 

Using  the method  of [8] for  m a p p i n g  s i n g u l a r i t i e s ,  we can wr i t e  Tlf  in th is  ca se  a s  

T',f [1] = C  In 1 , 
F I (6.4) 

w h e r e  

Obvion s ly ,  Tlf  [1 ] 1L:  Tlf  [1 ] ! L- 
a c i r c l e  can be wr i t t en  

V 9~ p2 
rl = R 2 -~ R 2 29o9 cos (q) - -  %). 

Hence  the known G r e e n ' s  funct ion G [!] for  a homogeneous  s lab  bounded by 

G ill = -~-l {T[ f'[l] - -  Tif  ill} = In f--.rl (6~ 

R e t u r n i n g  to (5.8),  we wr i t e  the G r e e n ' s  funct ion fo r  the s l abs  of a h a r m o n i c  s e r i e s ,  with condit ion (6.2) 
a t  the b o u n d a r y  of the r eg ion ,  a s  

G [u 2] = u (x o, Yo) In r___  (6 .6)  
u (x, y) rl 

Since 

Tlf[uZl=C u(xo, Yo) in 1 T ; f [ u 2 ] = C  u(x~ Yo) in 1__ 
u (x, y) r ' u (x, y) rl ' 

then the G r e e n ' s  funct ion in (6.6) d e s c r i b e s  the t e m p e r a t u r e  d i s t r ibu t ion  in a c i r c u l a r  r eg ion  of a h a r m o n i c  
f a m i l y  r e s u l t i n g  f r o m  a hea t  s o u r c e  of s t r eng th  2rr lying a t  the point  x0=x  I +p0cos~%, y0=yl  + o 0 s i n % ,  
with a van i sh ing  t e m p e r a t u r e  a t  the b o u n d a r y  of the r eg ion  (6.2) .  

C o n f o r m a l  m a p p i n g s  of the x ,  y p lane  onto p l anes  or  c u r v i l i n e a r  s u r f a c e s  with the c o o r d i n a t e s  g,  r~ 
have  the r e s u l t  that  (6.6) d e s c r i b e s ,  in t e r m s  of the v a r i a b l e s  },  rl, the t e m p e r a t u r e  d i s t r ibu t ion  r e s u l t i n g  
f r o m  a hea t  s o u r c e  in r eg ion  a t (into which ~ is  mapped)  when the t e m p e r a t u r e  van i shes  a t  the b o u n d a r y .  

The G r e e n ' s  funct ion in (6.6) can be u sed  to so lve  the b o a n d a r y - v a l u e  p r o b l e m  of t w o - d i m e n s i o n a l  
hea t  conduct ion with a c i r c u l a r  bounda ry  if the t h e r m a l  conduct iv i ty  of s lab  u 2 ks the s q u a r e  of a h a r m o n i c  
func t ion .  Going b a c k  to E q .  (2.4) ,  we w r i t e  it  fo r  th is  ca se  a s  

2~ 

R ~ (uT 0 lnr=lnQ) d % 
T (x o, Yo) -- 2z (x o, Yo) 0--p u p=n (6.7) 

0 

With p =u 2 =y2 and the bounda ry  condi t ion T o =R =1 for  0 < r < ~r and T o =R =0 fo r  �9 < ~ <  2~" a t  the c i r c l e ,  
we find, work ing  f r o m  (6.7) ,  

I { RZ- -Po(coscp ln  
T [y21 = 2n (Yx +9o sin %) 29o 

--gsin90 + 2 n y l - -  Po 

R ~ + 92o + 2R9o cos % 

R 2 + P~ - -  2RPo cos % 

1 arctg R ~ - - 9 ~  )}, 
r~ 2R9o sin % 

(6.8) 

which hoids  fo r  0 < r < lr, and 

T lye] = 1 { R2--9~ (cos%ln  
2~ (Yl § Po sin %) 29o 

R z + 9o + 2RPo cos tpo 

R ~ § pg - -  2Rpo cos % 

R 2 + 9~ % )  
- - n  sin % ) -  arclg 210,90R2--P~sin % ( 2yi + - s i n p o  ' (6.8) 
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for  lr < ~p< 27r. Using (5.6) and (5.7) and the solution (6.8) for this problem,  we can find the solutions of 
analogous p rob lems .  For  example,  sett ing T 1 =x, we find 

T [x2y ~] = T [y2] (6.9) 
X 

Substituting T[y 2 ] f rom (6.8) into (6.9), we find equations for the t empera tu re  distribution on a c i rcu la r  
plate whose the rmal  conductivity va r ies  according to x2y 2, with the boundary conditions 

t 
TIo=R for O<(p<~, 

x~ + Rcos~ 

T/p=R = 0 for n < q) < 2a. 

We note in conclusion that quite a large number  of problems of two-dimensional  heat conduction can 
now be solved, and work is bemg ca r r i ed  out on them. 
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